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In the modelling and simulation of acoustic spaces, previous work has focused mostly on optimising the 

values of reverberation times as the primary acoustic design parameter. According to ISO 3382, Early 

Decay Time (EDT) is an acoustic parameter which is more relative to perceived reverberance and is 

actually affected by the very early reflections. In this way EDT becomes an additional and useful method 

for characterising and optimising a room acoustics simulation. The goal of this project is to investigate the 

physical changes that affect this acoustic parameter most directly. For this purpose, a model of a 3D 

shoebox-shape room is used in which the user can control a range of physical acoustic properties relating 

to the simulation. The influence of the distance between the source-receiver, their distance from the 

boundaries and the orientation of the source are investigated. For the computer simulation, ODEON 10.1 

Auditorium was used which is based on the principle of geometric acoustic techniques. The results are 

verified through listening tests as well by objective comparison in terms of the resulting effect of each 

variation. 

1 Introduction 

Acoustic simulation techniques aim to achieve accurate and reliable auralization results through optimisation and 

matching of acoustic parameters to real-world measurements (where obtainable). Reverberation Time (RT) is the 

primary measure used to characterise the acoustics of a space although it is well known that it is not sufficient to present 

a complete profile of its properties, particular in terms of perception of the resulting auralization. Acoustic designers 

look more specifically at Early Decay Time (EDT) and Clarity values in order to give more information related to 

impulse response energy in relation to time. The aim of this paper is to study the behaviour of EDT in a virtual space 

based on geometric acoustic modelling subject to changing source/receiver positions. 

According to the ISO 3382 [1], EDT is evaluated from a linear regression of the first 10dB of decay of the backwards-

integrated squared impulse response curve. Hence strong early reflections will have a greater influence on this 

parameter over e.g. T20 or T30, as less of the reverberant tail is used to arrive at the final quantity. EDT is also referred 

as an acoustic parameter which is more directly related to perceived reverberance than the RT. Hence, it is considered 

that RT is a global parameter which is relative to the overall physical properties of the space while EDT is a parameter 

dependent on receiver position [2]. This leads to the conclusion that when considering this parameter, results should not 

be based on average values of many receiver points in the space. 

The goal of this study is to examine variations in EDT by changing the strength of the very early reflections in a 

standard space and examine the influence of the distance between the source/receiver, their distance from the 

boundaries and the orientation for the source on the results obtained. For this purpose, an experimental 3D shoebox-

shape room is created where a range of physical acoustic properties can be directly controlled by the user. The model 

has been created by using commercial acoustic simulation software, ODEON 10.1 Auditorium which combines the 

geometric acoustic techniques of image source and ray tracing. 

mailto:af539@ohm.york.ac.uk


   

2 Physical characteristics of the examined virtual model 

2.1 Dimensions and absorption coefficients 

Based on a previous study [3], the dimensions for the shoebox-shaped test model are based on those of existing large 

reverberation chambers. Thus, the dimensions of 10m x 8m x 5m are considered suitable for a sufficient number of 

reflections for reasonable calculations of the acoustic parameters.  

In order to keep the basic model relatively simple it was decided to define the same acoustic characteristics for all the 

boundaries. Taking into account the typical range of the defined Just Noticeable Difference (JND) in ISO 3382 [1], the 

reverberation time of the space was defined to be between 1 and 3 sec by applying absorption coefficient of 0.1 for all 

the frequencies bands. 

2.2 Calculation method in ODEON and scattering coefficients 

For the investigation of the physical factors, such as source/receiver position, that might influence EDT, it was 

necessary to create a stable model, independent of the calculation method software used. ODEON uses a hybrid method 

to calculate the acoustic parameters of a room, combining image source and ray tracing methods for the early reflections 

and ray tracing only for the late reflections. The shift from one calculation method to the other is defined by the 

Transition Order (T.O.). In previous work [3], it was concluded that with low values of T.O., early reflections were not 

simulated or they were not strong enough. It was also observed that higher values of T.O. did not result in a significant 

change in T30. Hence for this study it was considered better to use a T.O. of 5 to give more accurate simulation of early 

reflections. This means that the image source method is used for the calculation of early reflections up to 5
th

 reflection 

order and above this a ray tracing method is used. The number of rays was defined to be 1,000 based on the software 

recommendation and the impulse response length to 2,000 ms, sufficient for calculation of the overall reverberation 

time. 

The most common way to simulate the scattering effect of a reflecting sound in geometric computer modelling is based 

on the Lambert’s Law. Based on this law, the applied scattering coefficient takes a percentage of the energy of the 

specular reflections and scatters it in random directions [4]. Thus, for the purposes of this experiment, in order to avoid 

this random behaviour only the specular reflections based on the Snell’s Law were used. For this reason, a scattering 

coefficient of 0.00 was applied across all frequency bands for all of the boundaries. 

3 EDT in relation to source/receiver positioning 

3.1 Source at the centre of the space 

In order to examine the influence of the distance between the source and the receiver position, a grid area of receiver 

positions is used, at a distance of 1m from each other and at the same height as the source (1.5m). An omnidirectional 

source was placed in the centre of the space and 80 receiver positions were defined each pointing towards the source 

(Figure 1). 
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Figure 1: Figure of the grid with the receivers as points 

By using colour-mapping across the grid of receiver positions the variations of EDT values are presented, as obtained 

directly from ODEON. The colour scale on the right side of each plot shows the range of the EDT values in seconds for 



   

each frequency band. The colours are mapped across 0.01s variations in EDT for easier comparison of the changes in 

terms of JND. The parameter was examined across 8 frequency bands from 63Hz to 8000Hz. Although, for this paper 

only the colour-maps of 500Hz and 1000Hz are presented (Figure 2). 

Based on [5], the critical distance was estimated at 0.866m, within which it can be assumed that the acoustic parameters 

calculated cannot be relied upon. This explains the white areas in a range of 1m from the source position in which EDT 

is too short. 
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Figure 2: Colour-maps at (a) 500Hz and (b) 1000Hz, measuring EDT across the 80 receiver positions of the grid with 

the omnidirectional source placed at the centre of the space 

3.2 Source closer to one boundary 

In the second studied case, the omnidirectional source is placed at a distance of 2m from the upper boundary shown as 

the Figure 3. The colour-maps of 500Hz and 1000Hz are presented. 
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Figure 3: Colour-maps at (a) 500Hz and (b) 1000Hz, measuring EDT across the 80 receiver positions of the grid with 

the omnidirectional source placed at a distance of 2m from the upper boundary



   

4 EDT in relation to source orientation 

As an omnidirectional source is not going to have any influence on the results if it is rotated on its axis, in order to study 

the influence of source orientation on EDT, a frequency independent half-omnidirectional (hemispherical) source was 

placed at the centre of the space. Results were obtained and compared for four cases with the source oriented to 0° 

(towards the lower boundary in the plots which follow), 30°, 60°, 90° (rotated anticlockwise from 0° position). Figure 4 

shows the colour-maps at 1000Hz for the source rotated at 0° and 60° on its axis. The critical distance is estimated now 

as 1.23m from the source. 
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Figure 4: Colour-maps for 1000Hz, measuring EDT across the 80 receiver positions with the half-omnidirectional 

source rotated on its axis at (a) 0° (towards lower boundary) and (b) 60° (rotated anticlockwise from 0° position) 

5 Discussion 

By observing the colour-map of EDT values across the 80 receiver positions, no symmetry was observed. Thus, it was 

difficult to draw conclusions from the test cases described above designed to investigate the influence of relative 

source/receiver positioning and source orientation on EDT especially for low and mid-frequencies.  

However, symmetric behaviour was observed at higher frequency bands (4000Hz and 8000Hz).  Shorter values of EDT 

were observed closer to the source (Figure 5) (and for those receivers that directly face the half-omnidirectional source 

(Figure 6)), which implies that early reflections have a stronger influence on EDT at these receivers. Moving further 

away from the source EDT increases with the largest values observed approximately 1m from the corners (and for those 

receivers facing the rear of the half-omnidirectional source). 
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Figure 5: Colour-maps for 4000Hz, measuring EDT across the 80 receiver positions for the omnidirectional source 

placed (a) at the centre of the space and (b) at a distance of 2m from the upper boundary 
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Figure 6: Colour-maps for 4000Hz, measuring EDT across the 80 receiver positions for the half-omnidirectional source 

rotated on its axis at (a) 0° (towards the lower boundary) and (b) 60° (rotated anticlockwise from 0° position) 

6 Auralization results 

Based on the results obtained above, auralizations were prepared for a series of related listening tests. As EDT does not 

relate directly to spatial impression, it was considered that multi-channel reproduction might have an impact on the 

perception of these results as presented. Hence, anechoic material was convolved with only the W-channel of the B-

format impulse responses obtained and the resulting mono files played to subjects through closed headphones. The 

stimulus used was 40s of female singing, the long-term averaged spectra of which is represented at the Figure 6. Note 

that the audio examples are normalized relative to the direct sound such that it is perceived to be of equal level in each 

case. Hence, the participants focused only on the reverberant response of the space negating the possible impact of 

loudness on their perception. 



   

 

Figure 6: Log-term average frequency domain plot of the anechoic recording used for the auralizations in the range of 

63-8000Hz 

As discussed above, it was difficult to make conclusions from the EDT values observed when changing source/receiver 

distances or source orientation. Therefore in order to test a possible relationship between these factors and EDT, the 

auralized examples used for the listening tests were chosen based on the symmetry of the space. 

For the case of the omnidirectional source placed at the centre of the space, three receiver positions were chosen. One 

near the source (A) (Figure 7(a)) (but still outside the critical distance), one further away from the source (B), and a 

third closer to two of the boundaries (C). Additionally their symmetric counterparts were selected (A’, B’, C’). For the 

case of the omnidirectional source placed closer to the boundaries, receiver positions were chosen respectively 

(Figure7(b)). For the case of the half-omnidirectional source, two receiver positions were used. The first (A) 

(Figure7(c)) was in the receiver area of facing the direction of the source and the second (B) was on the opposite side 

facing the rear of the half-omnidirectional source. The near field was taken into account for all cases of and is marked in 

Figure 7. 

(a) (b)  

(c)  

Figure 7: Selected receiver positions for auralization; (a) for the omnidirectional source placed at the centre; (b) for the 

omnidirectional source at a distance of 2m from the left boundary and (c) for the half-omnidirectional source. The near 

field areas are marked with dotted lines in all cases and for (c) the summary of the near fields for the four rotated 

sources at 0°, 30°, 60° and 90° (rotated anticlockwise from 0° position) was taken into account 



   

Figure 8 displays EDT values for all frequency bands for the six auralization receiver positions (A, B, C, A’, B’, C’) for 

the case shown in Figure 7(b). Note the irregular behaviour of EDT across the frequency bands and the asymmetric 

behaviour for the corresponding receiver pairs. 
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Figure 8: EDT values across all the frequency bands and selected auralization receiver positions for the omnidirectional 

source placed at a distance of 2m from the upper boundary as shown in Figure 7 

Seven participants in the listening test were asked to express their perceived differentiation between pairs of presented 

sounds. The comparison was made between A-B, A-C, A’-B’, A’-C’ receiver positions for the first two cases of the 

omnidirectional source and A(0°)-A(30°), A(0°)-A(60°), A(0°)-A(90°), B(0°)-B(30°), B(0°)-B(60°), and B(0°)-B(90°), 

for the rotated half-omnidirectional source, which gives 14 examined pairs in total. They were marked using in 5-point 

scale, with 1 for very similar pairs and 5 for very different ones. Also they were asked to clarify which of each pair they 

perceived as being most reverberant.  

After an explanation of what was required of them the subjects heard two additional pairs as a training session to allow 

them to be familiar with the testing process as well as the rating scales [6]. These training examples include the most 

and the least expected differentiation in terms of perception of reverberation time and the subjects were allowed to hear 

them as many times as they needed it to be confident with their decision. During each examined example the subjects 

were able to play backwards and forwards within each individual case in order to be able to make comparison between 

different extracts. 

In the analysis of the subjective results, the difference in EDT between each pair was taken into account. If the 

difference was more that the JND a response was only considered correct if it was marked as greater than 3 on the scale. 

Additionally, the participants should have correctly identified the most reverberant of the two examples. Both of these 

conditions must be satisfied in order to consider the answer correct. For example, if someone had marked the perceived 

difference between a given pair as 4, but had incorrectly identified the most reverberant example of the two, the 

response was considered as being not reliable. 

No firm conclusions could be made when examining results relating to a change in source/receiver positions. There 

were cases where participants could not hear a difference, despite respective stimuli having EDT values with a 

difference greater that the JND. It is noted that this could be a disadvantage of the source material used in the test and 

giving the participants flexibility in selecting different extracts within each example. 

In the examples concerning changes in source orientation, participants could discriminate most clearly for the receiver 

position (A) (Figure 7(c)) and this corresponds to EDT values that differ by more than the JND across all frequency 

bands. Note that for receiver position (B) EDT values are less than the JND and yet most participants were able to 

determine a clear difference between the examples presented to them in terms of which was the most reverberant. This 

needs to be investigated further by considering changes in other related acoustic parameters that could possibly confirm 

this perceptual impression. 



   

7 Conclusions and further work 

This work is a primary step in a series of experiments relating to the variation and influence of EDT when considering 

auralizations based on geometric acoustic modelling. The idea is to study the physical factors and acoustic properties in 

a controlled computer model which could have an impact on the results of this specific acoustic parameter. In this 

paper, a very simple geometric shoebox shape model was used to examine the influence of the source/receiver position 

and orientation of a directional source. The model was created in ODEON 10.1 Auditorium and the acoustic parameter 

results were also obtained through the software. A non-symmetric behaviour of the EDT values was observed across the 

space especially for low and middle frequencies which did not give confidence in the conclusions reached about the 

behaviour of EDT for these studied cases. This concern was confirmed through listening tests in which the participants 

were not able to hear the expected differentiation of EDT based on a moving source/receiver position or on a different 

orientation of the source.  

This study will continue by investigated the influence of the number of rays used for this specific model and the 

scattering/absorption coefficient from one or all of the boundaries. Also, it is significantly important to study if the 

shape and the size of this specific model is a problematic case for the nature of the used algorithm. Additionally, 

different software methods will be used to generalize these results. From the outcome of the results of the 2
nd

 Round 

Robin on Room Acoustical Computer Simulation [7] it was also stated that “the evaluation according to the rules fixed 

in ISO may leave arbitrariness in its application for the case of EDT – determination of the ‘initial 10dB’ may also be 

dependent on the filter applied and its steepness”. 

Finally, it is considered very important to use different stimuli (music, speech or noise) for the listening tests as this 

might have an impact on the perceived auralization results. 
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